The nuclear race is on. China is upping the ante dramatically on thorium nuclear energy. Scientists in Shanghai have been told to accelerate plans (sorry for the pun) to build the first fully-functioning thorium reactor within ten years, instead of 25 years as originally planned.
“This is definitely a race. China faces fierce competition from overseas and to get there first will not be an easy task”,” says Professor Li Zhong, a leader of the programme. He said researchers are working under “warlike” pressure to deliver.
Good for them. They may do the world a big favour. They may even help to close the era of fossil fuel hegemony, and with it close the rentier petro-gas regimes that have such trouble adapting to rational modern behaviour. The West risks being left behind, still relying on the old uranium reactor technology that was originally designed for US submarines in the 1950s.
As readers know, I have long been a fan of thorium (so is my DT economics colleague Szu Chan). It promises to be safer, cleaner, and ultimately cheaper than uranium. It is much harder to use in nuclear weapons, and therefore limits the proliferation risk.
There are ample supplies of the radioactive mineral. It is scattered across Britain. The Americans have buried tonnes of it, a hazardous by-product of rare earth metal mining.
As I reported in January 2013, China’s thorium project was launched as a high priority by princeling Jiang Mianheng, son of former leader Jiang Zemin. He estimates that China has enough thorium to power its electricity needs for “20,000 years”.
The project began with a start-up budget of $350m and the recruitment of 140 PhD scientists at the Shanghai Institute of Nuclear and Applied Physics. It then had plans to reach 750 staff by 2015, but this already looks far too conservative.
The Chinese appear to be opting for a molten salt reactor – or a liquid fluoride thorium reactor (LFTR) — a notion first proposed by the US nuclear doyen Alvin Weinberg and arguably best adapted for thorium.
The Chinese appear to be opting for a molten salt reactor – or a liquid fluoride thorium reactor (LFTR) — a notion first proposed by the US nuclear doyen Alvin Weinberg and arguably best adapted for thorium.
This in entirely different from thorium efforts in the West that rely on light water technology used in uranium reactors. The LFTR has its own problems, not least corrosion caused by the fluoride.
“We are still in the dark about the physical and chemical nature of thorium in many ways. There are so many problems to deal with but so little time,” said Prof Li.
The great hope for thorium is that it could restore faith in the safety of nuclear power after the Fukushima disaster. It can be done on a much smaller scale, at atmospheric pressure, without the need for the vast structures than encase uranium reactors. You could have micro LFTRs for each steel mill or a small town, hidden away, almost invisible.
The British have an (underfunded) research project – ThorEA – anchored at Huddersfield University under Professor Robert Cywinksi. He says the technology is intrinsically safer since the metal must be bombarded with neutrons to drive the process. “There is no chain reaction. Fission dies the moment you switch off the proton beam,” he told me.
Thorium may at least do for nuclear power what shale fracking has done for natural gas, but on a bigger scale, for much longer, and with near zero carbon dioxide emissions.
Thorium may at least do for nuclear power what shale fracking has done for natural gas, but on a bigger scale, for much longer, and with near zero carbon dioxide emissions.
China’s thorium drive is galling for the Americans. They have dropped the ball. As I reported last year, the Oak Ridge National Laboratory in Tennessee actually built a molten salt thorium reactor in the 1960s. It was shelved by the Nixon Administration. The Pentagon needed plutonium residue from uranium to for nuclear bombs. The imperatives of the Cold War prevailed.
The thorium blueprints gathered dust in the archives until retrieved and published by former Nasa engineer Kirk Sorensen. The US largely ignored him: China did not.
Mr Jiang visited the Oak Ridge labs and obtained the designs – entirely legitimately – after reading an article in the American Scientist extolling thorium. His team concluded that a molten salt reactor may be the answer China’s prayers. It is playing out just as he hoped.
The Chinese are currently building 28 standard reactors – by far the biggest nuclear push in the world – and working on several research and development fronts at once. This is to break what it calls a “scary” dependence on imported fuel, but also to fight pollution.
The Hefei Institute of Physical Science in Anhui has just finished building the world’s largest experimental platform for an accelerator reactor that burns nuclear fuel with a powerful “particle gun”.
Professor Gu Zhongmao from the China Institute of Atomic Energy cautioned against too much exuberance on so-called fourth-generation reactors. “These projects are beautiful to scientists, but nightmarish to engineers,” he told the SCMP.
No comments:
Post a Comment